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Abstract

Since their rise in 2020, Diffusion Probability Models
(DPMs) have achieved revolutionary breakthroughs in the
field of image generation, thanks to their straightforward op-
timization processes. However, compared to one-step gen-
erative paradigms such as Generative Adversarial Networks
(GANs), the multi-time-step iterative sampling process of
DPMs leads to a significant decrease in sampling efficiency.
In this paper, we draw on methods for optimizing Stochastic
Gradient Descent (SGD) and introduce a momentum-based
score reutilization sampler designed to accelerate the sam-
pling process in diffusion models. Notably, this method is
train-free, can be directly applied to pre-trained diffusion
models and is orthogonal to existing accelerated sampling al-
gorithms. More specifically, our proposed sampler reuses the
score predicted by the network through a momentum mech-
anism, integrating score estimates at different scales, thereby
enabling samples to converge more quickly and smoothly to
the target distribution. The experimental results indicate that
our method reduced the FID to 3.18 on the CIFAR10 dataset,
which is a 36.1% improvement over the DDPM baseline of
4.98. Additionally, during the sampling process with fewer
steps, our sampling speed was twice that of the baseline.

Introduction
Since their introduction, deep learning generative models
like Variational Autoencoders Bayes (VAEs) (Kingma and
Welling 2013) in 2014 and Generative Adversarial Networks
(GANs) (Creswell et al. 2018) in 2015 have significantly im-
pacted various fields such as image generation, 3D recon-
struction, and speech generation. These models aim to gen-
erate samples that mimic a training data distribution, with
x ∼ pθ(x | z) representing the model’s output given a
sample z from a prior distribution z ∼ p(z). GANs have
faced challenges like mode collapse and limited diversity,
while VAEs often produce blurry images due to an imper-
fect surrogate objective (ELBO). However, the emergence
of Denoising Diffusion Probabilistic Models (DDPMs) (Ho,
Jain, and Abbeel 2020) in 2020 marked a significant ad-
vancement. Diffusion models, focusing on minimizing the
L2 norm between outputs and noise, have simplified the
optimization process and improved sample quality, leading
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them to become the current research focus in deep genera-
tive models (Croitoru et al. 2023; Yang et al. 2023).

However, DDPMs employ a thousand-step Markov chain
process to infuse images with noise, diffusing them into a
standard Gaussian noise state, subsequently leveraging neu-
ral networks to learn the noise distribution and reverse the
trajectory for image restoration. Notably, this Markov chain
necessitates a thousand neural network invocations, signifi-
cantly impeding the model’s sampling efficiency. Therefore,
compared to one-step generative models like GANs, sam-
pling efficiency remains a primary shortfall for DPMs (Zhou
et al. 2023; Wang et al. 2023; Zheng et al. 2023a). In re-
sponse to this challenge, extensive research efforts have been
dedicated to enhancing DDPMs’ sampling efficiency. Note-
worthy advancements include: accelerated sampling meth-
ods that, by adjusting the sampling formula, negate the need
for additional training, such as DDIM (Song, Meng, and
Ermon 2020), and DPM-Solver series methods (Lu et al.
2022a,b; Zheng et al. 2023b); strategies based on knowledge
distillation, like Consistency Models (Song et al. 2023) and
Rectified Flow (Liu, Gong, and Liu 2022); and various ac-
celerated sampling algorithms, for instance, AutoDiffusion
(Li et al. 2023), which achieves training-free sampling ac-
celeration by optimizing the time steps and network archi-
tecture through search algorithms.

The acceleration algorithms based on knowledge distilla-
tion mentioned above are capable of compressing Markov
chains with thousands of steps into one step. However, such
methods often require a considerable amount of additional
training resources. Meanwhile, other training-free accelera-
tion algorithms, represented by the DPM-Solver series, have
made up-to-date progress in reducing the number of sam-
pling steps to under 10 steps with only a slight compro-
mise in sample quality. Yet, there is still a notable gap when
compared to one-step sampling algorithms exemplified by
GANs. Therefore, it is imperative to further reduce the num-
ber of sampling steps without sacrificing quality in training-
free acceleration algorithms. Inspired by SGD and Langevin
dynamics sampling methods, this paper proposes an inno-
vative momentum-based score reutilization sampling strat-
egy, orthogonal to existing acceleration algorithms and train-
free. It enhances sampling efficiency on top of the current
training-free acceleration methods without compromising
quality. Specifically, since the parameters for the predicted



Figure 1: Performance Demonstration of MBSRapid Accelerated Sampling. Left: Performance comparison between our pro-
posed MBSRapid and the DDPM and DDIM methods on the CIFAR10 dataset with different NFE settings (25, 50, 100). Right:
Comparative results on the high-resolution LSUN and CelebA-HQ datasets with NFE set to 25 and momentum term m set to
0.15, between DDPM and our proposed method.

noise distribution at each step are shared by the same neural
network, the scores at different scales inherently reflect the
information of the same training data distribution. Accord-
ingly, our proposed method introduces a momentum mech-
anism, considering the correlations between different steps
in the iterative process, and allows for the reutilization of
previously computed scores. Such reutilization not only in-
creases computational efficiency but also reduces the loss of
inferred sample information, thus fostering faster and more
stable convergence of the samples to the target distribution.

Our experimental results demonstrate that the proposed
method can maintain or even enhance the quality of sam-
pling with significantly reduced steps, paving a new way for
accelerated sampling in diffusion models. Overall, this paper
highlights the current deficiencies in the sampling efficiency
of widely-focused DPMs and introduces a momentum-based
score reutilization strategy for accelerated sampling that re-
quires no additional training.

Related Work
Accelerated Sampling Based on Sampler Design
DDIM (Song, Meng, and Ermon 2020) marks a signifi-
cant breakthrough in accelerated sampling research by de-
constructing the limitations of Markov chains and eliminat-
ing the dependency on p(xt|xt−1), thereby accelerating the
sampling process. DDIM reassesses the inherent Markov as-
sumption within DDPMs, noting that the relevance of the
current state is not only with the preceding state but also
pertains to earlier ones. This insight has prompted the theo-
retical derivation of a new sampling algorithm that doesn’t
require a complete time step sequence to achieve the sam-
pling goal. Notably, DDIM enables the execution of sam-
pling using any subset of the original time steps, achiev-
ing rapid sampling in no more than 100 steps and garnering
widespread attention in academia.

Currently, the DPM-Solver series (Lu et al. 2022a,b;
Zheng et al. 2023b) represents the state-of-the-art in ac-
celerated sampling. It relies on a unified framework based
on ScoreSDE, using the semi-linear structure of DPMs to
deduce analytical solutions from an ODE perspective and
employs alternative techniques for approximate calculations
of these solutions. Through three iterative versions, DPM-

Solver accomplishes DPMs sampling within 10 steps with-
out additional training, standing as the fastest method avail-
able. Furthermore, DPM-Solver reveals that DDIM is essen-
tially its first-order method, and its higher-order methods can
achieve smaller error rates, hence surpassing DDIM’s sam-
pling capabilities within 10 steps.

Methods Based on Knowledge Distillation
Consistency Models (Song et al. 2023) and Rectified Flow
(Liu, Gong, and Liu 2022) achieve “one-step sampling” by
adopting knowledge distillation strategies. The consistency
model, by modeling f(xt, t) = f(xt′ , t

′), compresses the
diverse outputs of DPMs at each time step into uniform re-
sults, allowing each time step to directly produce the sam-
pling target x0. Concurrently, Rectified Flow models the
sampling trajectory of DPMs as a linear path and distills
a v(xt, t) model through training. By exploiting this “ve-
locity” model and the characteristics of a linear trajectory,
one-step sampling is readily achieved. Although distillation-
based methods facilitate efficient sampling, they typically
require a substantial investment in training resources.

Other Accelerated Sampling Strategies
AutoDiffusion (Li et al. 2023) takes off from the pre-trained
model structure of DPMs and the redundancy of time steps,
significantly reducing the computational burden of the sam-
pling process by directly simplifying time steps and model
structures through optimization search algorithms. Notably,
this method has been demonstrated to be orthogonal to other
accelerated sampling techniques, potentially enhancing the
speed of existing efficient sampling methods, such as DPM-
Solver, even further.

Method
Motivation
Inspired by the concept of SGD (Robbins and Monro 1951)
and the Langevin dynamics sampling algorithm (Welling
and Teh 2011) used in NCSNs (Song and Ermon 2019), as
follows:

xi+1 = xi + ϵ∇x log p(x) +
√
2ϵZi, i = 0, 1, . . . ,K, (1)

where zi ∼ N (0, I), x0 ∼ π(x)(π(x) is any arbitrary prior
distribution); α represents the step size. When α → 0,K →



∞, xK converges to the distribution p(x). we observe that
the form of Equation (1) is similar to that of the SGD op-
timization algorithm. The

√
2ϵZi term in it introduces nec-

essary randomness but does not alter the distribution itself.
If we consider ϵ as the learning rate in SGD, then the loss
function of SGD can be analogized to − log p(x). In this
context, the goal of SGD is to minimize this loss function,
which is equivalent to maximizing the likelihood function
log p(x). Considering the mathematical similarity between
Langevin dynamics sampling (i.e., DPMs sampling algo-
rithm) and SGD, we propose using optimization techniques
of SGD, such as momentum methods (Polyak 1964), RM-
SProp, Adam (Kingma and Ba 2014), etc., to accelerate or
smooth the sampling process of DPMs. Specifically, we in-
troduce a Langevin dynamics sampling algorithm with mo-
mentum mechanism as shown in Equation (2):

vi+1 = mvi − ϵ∇x log p(x) +
√
2ϵZi,

xi+1 = xi − vi+1,
(2)

where m represents the momentum coefficient, with a value
range between 0 and 1 . The variable v accumulates previous
scores. By reutilizing these scores, we are able to integrate
information across different time scales, thereby achieving
faster and smoother convergence of samples to the target
distribution. This method is orthogonal to other accelerated
sampling algorithms.

Momentum-based Accelerated Sampler
In addition to the score-based DPMs such as NCSNs,
there are also DPMs founded on variational theory, such
as DDPMs and DDIM. Notably, the ScoreSDE (Song et al.
2020) research successfully unified these DPM perspectives
using Stochastic Differential Equations (SDE), proposing a
unified diffusion framework that employs neural networks to
predict score ∇x log p(x), combined with SDE or Ordinary
Differential Equation (ODE) solvers for sample generation.
This implies that for all DPMs, whether from a variational or
score perspective, the outputs predicted by neural networks
can be directly or indirectly considered as score, thus liken-
ing the DPM sampling process to the SGD optimization al-
gorithm. Hence, all DPMs can reuse score via the momen-
tum mechanism without additional training burden, thereby
accelerating sampling.

For all DPMs, we can unify the sampling methods as per
Equation (3):

xt−1 = λxt − ηdxt + ξzt, t = 0, 1, . . . , T, (3)

where zt ∼ N (0, I), with λ and ξ as coefficients for adjust-
ing weights, η as the step size akin to a “learning rate”, and
dxt as the neural network output at step t. For DDPMs, the
sampling formula is expressed as Equation (4):

xt−1 =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt + σtzt, (4)

where αt, ᾱt, and x0 are all defined by xt =√
ᾱtx0 +

√
1− ᾱtz, with x0 being derived from

xt and zθ (xt, t). Additionally, σ2
t is equivalent to

β̃t = ((1− ᾱt−1) / (1− ᾱt)) · βt or βt. We derive λ

as (
√
ᾱt−1βt +

√
αtᾱt (1− ᾱt−1)) / (1− ᾱt)

√
ᾱt, η

as (1− αt)
√
ᾱt−1/

√
ᾱt (1− ᾱt), dxt as zθ (xt, t), and

ξ as σt. For NCSNs, the primary sampling formula is
the Langevin dynamics sampling algorithm, as shown in
Equation (1), yielding λ as 1, η as −ϵ, dxt as ∇x log p(x),
and ξ as

√
2ϵ. In DDIM, the sampling method is given by

Equation (5):

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtzθ (xt, t)√

ᾱt

)
+√

1− ᾱt−1 − σ2
t zθ (xt, t) + σtzt,

(5)

in this formulation, σ2
t = τ2β̃t. When τ is set to 1 , the

model reverts to the traditional DDPM sampling form as
described in Equation (4). Conversely, when τ is set to 0,
it transitions to the sampling method of DDIM. Based on
Equation (5), we can derive for the DDIM sampling al-
gorithm that λ as

√
ᾱt−1/

√
ᾱt, η as

√
(1− ᾱt) ᾱt−1/ᾱt√

1− ᾱt−1, dxt as zθ (xt, t), and ξ as 0 . Thus, we have
unified the mentioned DPMs sampling algorithms into the
form of Equation (3). Building upon this, by introducing a
momentum mechanism, we arrive at a unified formula for
momentum-based accelerated sampling as shown in Equa-
tion (6):

vt−1 = mvt + (1−m) · (ηdxt − ξzt) ,

xt−1 = λxt − vt−1.
(6)

Improved Momentum-Based Accelerated Sampler
The momentum mechanism, since its inception in deep
learning, has undergone several iterations. For instance, the
introduction of “predictive” updates in Nesterov Momentum
(Nesterov 1983) has been proven more robust than tradi-
tional momentum methods in practical applications. In ad-
dition, the Adam method (Kingma and Ba 2014) can ad-
just momentum weights, effectively integrating features at
different scales. Utilizing these advancements in momen-
tum mechanisms, we can apply both Nesterov Momentum
and Adam methods to the sampling process in DPMs, using
score from various time scales to accelerate sampling. With
Nesterov Momentum, we predict the score for the next time
step to expedite convergence, as shown in Equation (7):

vt−1 = mvt + (1−m) · (ηd (λxt −mvt)− ξzt)

xt−1 = λxt − vt−1
(7)

Using the Adam method, we can adaptively integrate
score from different time scales, thus accelerating the sam-
pling process, as detailed in Equation (8):

vt−1 = (µ1vt + (1− µ1) · (ηdxt − ξzt)) /
(
1− µt

1

)
,

ct−1 =
(
µ2ct + (1− µ2) · (ηdxt − ξzt)

2
)
/
(
1− µt

2

)
,

xt−1 = λxt −
vt−1√
ct−1 + ζ

,

(8)
where vt−1 and ct−1 represent the first and second moment
estimates of the score, respectively. The hyperparameters µ1



and µ2 are typically set to 0.9 and 0.999 , respectively. Ad-
ditionally, ζ is a small constant used to prevent division by
zero, set to 10−8 in this paper.

To conclude, we have thoroughly introduced the complete
suite of improvements for our momentum-based score re-
utilization sampler, incorporating momentum, Nesterov Mo-
mentum, and Adam methods into our approach. This leads
to a unified update formula: xt−1 = MBSRapid (xt+
ξzt,m, µ1, µ2), thus establishing our sampling algorithm as
presented in Algorithm 1.

Algorithm 1: MBSRapid Algorithm
Input: xT ∼ N (0, I)
Parameter: m,µ1, µ2, ξ
Output: x0

1: Initialization: xT ∼ N (0, I),m, µ1, µ2, ξ
2: for t = T, . . . , 1 do
3: zt ∼ N (0, I) if t>1, else zt = 0
4: xt−1 = MBSRapid (xt + ξzt,m, µ1, µ2)
5: end for
6: return x0

Experiments
Experimental Setup
To validate the effectiveness of our proposed method and
its orthogonality to existing approaches, we selected four
datasets for experimentation: CIFAR10 (Krizhevsky, Hin-
ton et al. 2009) (32×32), CelebA (Liu et al. 2018) (32×32),
CelebA-HQ (Karras et al. 2017) (256×256), and LSUN (Yu
et al. 2015) (256×256). The performance metrics used in the
experiments were FID and IS.

Regarding baseline models, considering that DDIM dis-
rupts the Markov chain assumption in DDPM, any subset of
the original sampling step sequence in DDPM and NCSN
algorithms can complete the sampling process. Hence, we
introduced our proposed sampler on top of the baselines
of DDPM, DDIM, and NCSN algorithms. In Equation (4),
DDPM’s σ2

t takes two different values: βt and β̃t. Studies
have shown that β performs better in 1000-step sampling,
while β̃t is more effective in fewer-step sampling (Bao et al.
2022). Based on this, to verify the accelerated sampling ef-
fect of our algorithm, the β̃t setting was used in the exper-
iments. In fewer-step sampling experiments, we employed
25, 50, and 100 steps for Number of Function Evaluations
(NFE) (Lu et al. 2022a) configurations. In the ablation ex-
periments, we observed that the sole use of the momen-
tum method outperforms Nesterov Momentum and Adam.
Therefore, unless otherwise stated, the methods mentioned
in this paper refer to the baseline model combined with the
momentum strategy.

Overall Performance
In Table 1, we present a comprehensive comparison of the
proposed method in this study with existing benchmarks
such as DDPM, DDIM, and NCSN. Utilizing the CIFAR10
dataset and under the setting of 1000 NFEs, the results from

Figure 2: Optimal Momentum Strategy Search on the CI-
FAR10 Dataset Using the DDPM Approach with NFE Set
to 100, involving Momentum, Nesterov Momentum, and
Adam. The vertical axis represents the FID on a logarithmic
scale, with the ‘×’ marker indicating the baseline method,
and the ‘*’ marker denoting the optimal result for the cur-
rent curve (same below).

Table 1 demonstrate a significant improvement in FID and
IS metrics by our method over these three benchmarks. For
instance, building upon the DDPM approach, our method
reduced the FID score of the CIFAR10 dataset from 4.98 to
3.18, marking an enhancement of 36.1% compared to the
baseline method. This outcome unequivocally indicates that
our approach can generate samples of higher quality under
the same NFE conditions.

In Figure 1, we further validate the effectiveness of our
method in accelerated sampling. Observing Figure 1 (left),
on the CIFAR10 dataset, we conducted comparative experi-
ments using both DDPM and DDIM methods under the set-
tings of 25, 50, and 100 NFEs. The results reveal that, after
incorporating our proposed momentum mechanism (repre-
sented by solid lines), it consistently outperforms the equiv-
alent baseline methods (depicted by dashed lines), as the
solid lines are always positioned below and to the left of the
dashed lines. This confirms the significant advantage of our
method. Moreover, Table 2 lists the FID comparison results
combining our method with the three benchmarks across all
NFE settings. The data indicate performance enhancements
in all baseline methods and NFE settings with our approach.

Sampler CIFAR10

IS↑ FID↓
DDPM 9.06 ± 0.08 4.98
Ours 9.41 ± 0.13 3.18

DDIM 9.08 ± 0.09 4.28
Ours 9.18 ± 0.08 3.54

NCSN 8.83 ± 0.10 24.35
Ours 8.98 ± 0.11 22.20

Table 1: Comparative Results of Different Benchmark Meth-
ods and Our Method on the CIFAR10 Dataset with NFE Set
to 1000 (FID score).



Figure 3: Optimal Search Range for the Momentum Hy-
perparameter m. Top: Performance comparison on the CI-
FAR10 dataset using the DDPM method across all NFE set-
tings, by adjusting the value of the hyperparameter m. Bot-
tom: Visual comparison of effects on the CelebA dataset us-
ing the NCSN method with NFE set to 100, by altering the
value of the hyperparameter m.

Sampler NFE

25 50 100 1000

DDPM 22.30 15.39 10.94 4.98
Ours 15.17 9.30 5.65 3.18

DDIM 10.24 7.48 5.82 4.28
Ours 7.95 5.86 5.69 3.54

NCSN 407.4 304.3 201.2 24.35
Ours 407.2 304.2 201.1 22.20

Table 2: Comparison Results of Different Benchmark Meth-
ods and Our Method Across All NFE Settings on the CI-
FAR10 Dataset (FID score).

These results suggest that our method further improves the
performance of existing samplers. Analyses from Figure 1
(left) and Table 2 demonstrate that our method achieves
comparable effects to DDIM and DDPM at 50 and 100 NFE
settings, respectively, at 25 and 50 NFE settings. This evi-
dences a doubled sampling speed compared to baseline sam-
plers, further validating the effectiveness and orthogonality
of our proposed accelerated sampler.

To further verify the efficacy of our method in high-
resolution image accelerated sampling, we examined Fig-
ure 1 (right). Using high-resolution datasets like LSUN
and CelebA-HQ, and setting NFE to 25, we compared the
DDPM and our sampler integrated with the momentum
mechanism (momentum set at 0.15). Notably, our method
produced images with higher fidelity and more intricate tex-
ture details in fewer sampling steps. This further substanti-
ates that our method provides efficient accelerated sampling
when processing high-resolution datasets.

Ablation Experiments
Momentum-based Accelerated Sampler. In the Methods
section, we introduced three momentum mechanisms: mo-
mentum, Nesterov momentum, and Adam. To determine the
optimal momentum-based accelerated sampling strategy, we
conducted a search for the best momentum strategy on the
DDPM benchmark, setting the NFE to 100. Notably, in the
Adam method, the accumulation of vt is consistent with the
momentum accumulation fraction. Therefore, we directly
defined the hyperparameter µ1 as equal to the optimal pa-
rameter m found under the same benchmark method and
NFE setting. As shown in Figure 2, the results indicate that
the Adam strategy performed the worst, while the pure mo-
mentum strategy demonstrated superior performance com-
pared to the Nesterov momentum strategy. Consequently, in
other experimental settings, we chose to use only the mo-
mentum mechanism to reuse scores for accelerated sam-
pling.

Hyper-Parameters. To determine the optimal range of the
hyperparameter m in the momentum method, we searched
for the best range of m for all NFE settings in the DDPM
method. As shown in Figure 3 (top), we observed that the
sample quality initially increases and then decreases with
growing momentum. Additionally, we found that the opti-
mal value of m is positively correlated with NFE. Further
analysis revealed that a larger m value means reusing more
scores. Moreover, a higher NFE represents a baseline sam-
pling with higher fidelity and finer texture details. To fur-
ther enhance the sampling quality on an already high-quality
sampling base, it is necessary to reuse more scores. There-
fore, a higher NFE requires a larger hyperparameter m. As
seen in Figure 3 (bottom), the sample quality first increases
and then decreases with the increasing value of m, indicating
that there is a balanced range for reusing scores in different
methods and NFE settings to achieve the best effect in detail
texture and overall optimization. This finding also suggests
that the reused scores (momentum) contain more detailed
texture information.

Conclusion
In this paper, inspired by SGD and Langevin dynamics sam-
pling, we proposed a momentum-based score reutilization
strategy for accelerated sampling, which does not require
any additional training process. Through extensive experi-
mental validation, we found that the method proposed in this
paper further enhances the sampling speed on the basis of
existing accelerated sampling algorithms, effectively allevi-
ating the current limitations in sampling efficiency of DPMs.
This aspect has garnered widespread attention in both aca-
demic and industrial circles. In our future work, we plan to
apply and extend the proposed method on more advanced
accelerated sampling strategies, with the aim of further im-
proving the sampling efficiency of DPMs and driving the
development of this field.
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